이 논문 "Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search"는 대규모 언어 모델(LLM)의 추론 시간 계산(inference-time computation)을 확장하여 복잡한 작업에 대한 성능을 향상시키는 새로운 프레임워크인 Adaptive Branching Monte Carlo Tree Search (AB-MCTS)를 제안합니다.서론 및 배경최근 연구에 따르면 추론 시 계산량을 늘리는 것이 LLM의 복잡한 작업 성능을 크게 향상시킬 수 있음이 입증되었습니다. 이러한 추론 시간 스케일링 접근 방식은 크게 세 가지로 분류됩니다: (1) 후학습 미세 조정(post-training fine-tuning..